

RECOMMENDATIONS FOR OBTAINING SAMPLES OF CASTING PARTS

This manual has been put together to clarify the methods that should be used to obtain samples of material (commonly known as specimens), representing the cast parts' mechanical and metallographic characteristics, whether Grey or Spheroidal casting.

Index

1. Introduction
2. Terms and Definitions
3. Grey Cast-irons
3.1. Tensile and HB hardness characteristics of grey cast-iron, measured in machined specimens using casting samples
3.2. Definition of samples for tensile testing
3.3. Additional information on the mechanical and physical characteristics of the casting samples with a crude casting diameter of 30 mm
3.4. Placing the sample in the part5
3.5. Errors in samples
4. Spheroidal Graphite Cast-irons
4.1. Tensile and HB hardness characteristics of spheroidal cast-iron, measured in machined specimens using casting samples
4.2. Definition of samples for tensile testing
4.3. Additional information about the characteristics of spheroidal casting
4.4. Placing the sample in the part8
4.5. Errors in samples

1. Introduction

The material's mechanical characteristics can be assessed in machined specimens made from: independent samples, samples attached to the part, samples included in the part and/or samples cut from the part.

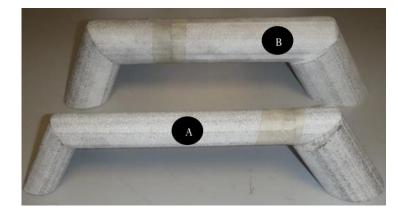
Due to the size and type of the parts cast at Fumbarri, whenever a material's mechanical characteristics are going to be assessed, we recommend you use the samples included in the part, as they are the ones that best represent the parts' characteristics.

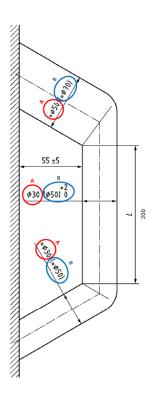
There are currently two standards that set the methodology for defining samples, and these standards are as follows: UNE-EN 1561:2012 "Founding. Grey Cast-irons" and UNE-EN 1563:2019 "Founding. Spheroidal Graphite Cast-irons".

2. Terms and Definitions

- Casting sample: An amount of cast material that represents the casting material, including independent samples, attached samples and samples included in the part. The specimen to be tested will be obtained from these samples through machining.
- Independent samples: Sample cast in an independent sand mould under the representative manufacturing conditions and type of material.
- Sample attached to the part: Sample cast in the mould along with the part, with a common filling system.
- Sample included in the part: Sample that is directly joined to the casting part. At Fumbarri we recommend this system to obtain samples.
- Deciding wall thickness: The wall thickness that is representative of the casting parts, and which is defined by determining the size of the casting samples for which the mechanical properties are applied.

3. Grey Cast-irons


3.1. Tensile and HB hardness characteristics of grey cast-iron, measured in machined specimens using casting samples.


NAME OF MATERIAL		DECIDING WAL	L THICKNESS mm		
Symbolic	Numerical	>	5	Minimum Tensile Strength MPa	HB Hardness
EN-GJL-250 (GG25)	250 5.1301	50	100	220	160 to 220
	5.1301	100	200	200	*
EN-GJL-300 (GG30)	-300	50	100	260	180 to 240
	5.1302	100	200	240	*

* For deciding wall thicknesses of t>100mm, the casting types are not classed according to their hardness. As the deciding thickness increases, the hardness decreases. For further details on hardness, please see the UNE-EN 1561:2012 standard "Founding – Grey Cast-irons".

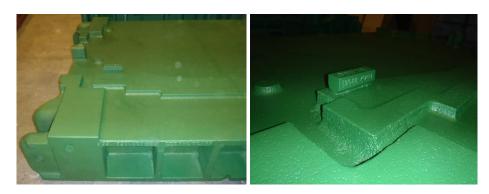
3.2. Definition of samples for tensile testing

DECIDING WALL THICKNESS mm		Type 1 Sample included in part		
N	\leq	See Figure 1	Diameter of the tensile specimen	
50	100	30 mm (A)	20	
100	200	50 mm (B)	32	

3.3. Additional information on the mechanical and physical characteristics of the casting samples with a crude casting diameter of 30 mm.

			Name of	ame of material	
Characteristic	Symbol SI Unit		EN-GJL-250	EN-GJL-300	
Tensile strength	Rm	MPa	250 to 350	300 to 400	
Conventional yield strength at 0.1%	Rp0.1	MPa	165 to 228	195 to 260	
Lengthening	A	%	0.8 to 0,3	0.8 to 0.3	
Compressive strength		MPa	3.01 x R _m	2.87 x R _m	
Conventional yield strength at 0.1% compression		MPa	325	390	
Bending strength		MPa	1.66 x R _m	1.60 x R _m	
Shear strength		MPa	290	345	
Torsional strength		MPa	1,36	x R _m	
Modulus of elasticity	E	GPa	103 to 118	108 to 137	
Poisson's Ratio	v	12	0.26		
Flexural fatigue strength		MPa	0.46	x R _m	
Repeated alternate tensile / compression strength		MPa	0.34 x R _m		
Torsional fatigue strength		MPa	0.38 x R _m		
Fracture toughness	K _k	MPa.m ^{1/2}	20	19	
Density	Р	t/m³	7.2	7.3	
Specific heat capacity Between 20°C and 200°C Between 20°C and 600°C	с	J/(kg.K)	460 535		
Linear expansion coefficient Between -100°C and + 20°C Between 20°C and 200°C Between 20°C and 400°C	α	µm/(m.K)	10.0 11.7 13.0		
Thermal conductivity At 100°C At 200°C At 300°C At 400°C At 500°C	A	W/(m.K)	48.5 47.5 46.5 45.0 44.5	47.5 46.0 45.0 44.0 43.0	
Resistivity	Р	Ω .mm ² /m	0.73	0.70	
Coercitivity	H _o	A/m	560 to 720		
Maximum permeability	μ	µH/m	220 1	to 330	
Loss due to hysteresis at B=1T	· · · · · ·	J/m ³	2500	to 3000	

1 MPa equals 1 N/mm²


3.4. Placing the sample in the part

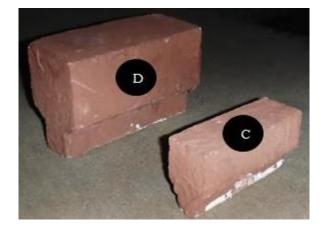
The sample will be stuck to the model, on the working side, and in a horizontal position (good side). It should never be placed on the bottom of the bases or inside the drawers, or in a vertical position, as the material's characteristics can be altered by the mould filling process.

3.5. Errors in samples

For Grey Cast-iron, only the geometry of the previously shown sample should be applied, as otherwise the specimen obtained will not be representative of the material's characteristics. Common errors:

Use samples for Spheroidal Cast-iron in Grey Cast-iron.

 Place samples inside the drawers or in a vertical position. This should be avoided, as the filling process or the residue deposits from the polystyrene combustion are left inside the specimens, making them invalid for the purpose in question, which is to represent the part's characteristics and its deciding thickness.

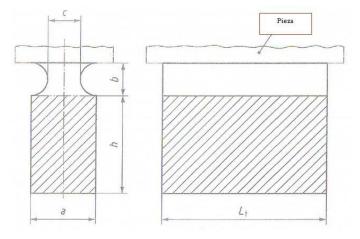

4. Spheroidal Graphite Cast-irons

4.1. Tensile and HB hardness characteristics of spheroidal cast-iron, measured in machined specimens using casting samples.

			Name of	Name of material		
Characteristic	Symbol	mbol SI Unit EN-GJL-250		EN-GJL-300		
Tensile strength	Rm	MPa	250 to 350	300 to 400		
Conventional yield strength at 0.1%	Rp0.1	MPa	165 to 228	195 to 260		
Lengthening	A	%	0.8 to 0,3	0.8 to 0.3		
Compressive strength		MPa	3.01 x R _m	2.87 x R _m		
Conventional yield strength at 0.1% compression		MPa	325	390		
Bending strength		MPa	1.66 x R _m	1.60 x R _m		
Shear strength		MPa	290	345		
Torsional strength		MPa	1,36 x R _m			
Modulus of elasticity	E	GPa	103 to 118	108 to 137		
Poisson's Ratio	v	2	0.26			
Flexural fatigue strength		MPa	0.46 x R _m			
Repeated alternate tensile / compression strength		MPa	0.34 x R _m			
Torsional fatigue strength		MPa	0.38 x R _m			
Fracture toughness	K _z	MPa.m ^{1/2}	20	19		

4.2. Definition of samples for tensile testing

ESPESOR DETERMINANTE DE LA PARED mm		Tipo de Muestra Incluida en la	Diámetro de la probeta de	
>	≤	Pieza Véase Figura 5	tracción	
30	60	С	14	
60	200	D	14	



TYPE OF SAMPLE	DECIDING THICKNESS OF THE PART	a	b Max.	C Min.	h	Lt
С	30 to 60	40	30	20	40 to 65	150
D	60 to 200	70	52.5	35	65 to 105	150

4.3. Additional information about the characteristics of spheroidal casting

Main mould structure		Ferrite	Ferrite-Pearlite	Pearlite <mark>-</mark> Ferrite	Pearlite
Resistivity	μ Ω .m	0,50	0.51	0.53	0.54
Loss due to hysteresis	J/m³	600	1345	2248	2700
Maximum permeability	$\mu H/m$	2136	1596	866	501
Density	Kg/dm³	7.1	7.1	7.2	7.2
Linear expansion coefficient from 20°C to 400°C	µm/(m.K)	12.5	12.5	12.5	12.5
Specific heat capacity from 20°C to 500°C	J/(kg.K)	515	515	515	515
Thermal conductivity at 300°C	W/(K.m)	36.2	35.2	32.5	31.1
Fracture toughness	MPa. \sqrt{m}	82	63	38	30
Compressive strength	MPa	700	800	870	1000
Fatigue limit (rotating bending) with notch (f10.6 mm)	MPa	122	134	149	168
Fatigue limit (rotating bending) without notch (Ø10.6 mm)	MPa	195	224	248	280
Poisson's Ratio v	104932	0.275	0.275	0.275	0.275
Modulus of elasticity E (tensile & compressive strength)	GN/m²	169	169	174	176
Torsional strength	MPa	360	450	540	630
Shear strength	MPa	360	450	540	630
Characteristic	Unit	EN-GJS-400-18	EN-GJS-500-7	EN-GJS-600-3	EN-GJS-700-2 EN-GJS-700- 21

4.4. Placing the sample in the part

The sample will be stuck to the model, on the working side, and in a horizontal position (good side). It should never be placed on the bottom of the bases or inside the drawers, or in a vertical position, as the material's characteristics can be altered by the mould filling process.

4.5. Errors in samples

For Spheroidal Cast-iron, only the geometry of the previously shown sample should be applied, as otherwise the specimen obtained will not be representative of the material's characteristics.

Never place the samples inside the drawers or in a vertical position, as the residue deposits from the polystyrene combustion would be left in the specimens, altering the material's characteristics.

Samples stuck to copies or profiles should not be placed, as this would cause hot spots that may lead to contraction defects (shrinkages).

